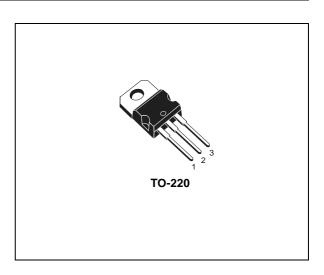


STP62NS04Z

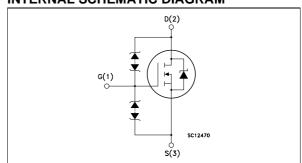
N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY™ MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP62NS04Z	CLAMPED	<0.015 Ω	62 A

- TYPICAL $R_{DS}(on) = 0.0125 \Omega$
- 100% AVALANCHE TESTED
- LOW CAPACITANCE AND GATE CHARGE
- 175 °C MAXIMUM JUNCTION TEMPERATURE


DESCRIPTION

This fully clamped Mosfet is produced by using the latest advanced Company's Mesh Overlay process which is based on a novel strip layout.


The inherent benefits of the new technology coupled with the extra clamping capabilities make this product particularly suitable for the harshest operation conditions such as those encountered in the automotive environment. Any other application requiring extra ruggedness is also recommended.

APPLICATIONS

- ABS, SOLENOID DRIVERS
- POWER TOOLS

INTERNAL SCHEMATIC DIAGRAM

Ordering Information

- · · · · · · · · · · · · · · · · · · ·			
SALES TYPE	MARKING	PACKAGE	PACKAGING
STP62NS04Z	P62NS04Z	TO-220	TUBF

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage (V _{GS} = 0)	CLAMPED	V
V_{DG}	Drain-gate Voltage	CLAMPED	V
V_{GS}	Gate- source Voltage	CLAMPED	V
I _D	Drain Current (continuous) at T _C = 25°C	62	А
I _D	Drain Current (continuous) at T _C = 100°C	37.5	A
I_{DG}	Drain Gate Current (continuous)	± 50	mA
I _{GS}	Gate SourceCurrent (continuous)	± 50	mA
I _{DM} (•)	Drain Current (pulsed)	248	A
P _{tot}	Total Dissipation at T _C = 25°C	110	W
	Derating Factor	0.74	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	8	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	500	mJ
V _{ESD}	ESD (HBM - C = 100pF, R=1.5 kΩ)	8	kV
T _{stg}	Storage Temperature	-55 to 175	°C
T _j	Operating Junction Temperature	-55 to 175	C

^(•) Pulse width limited by safe operating area.

(2) Starting $T_i = 25$ °C, $I_D = 20A$, $V_{DD} = 20V$

March 2004 1/8

⁽¹⁾ $I_{SD} \le 40A$, $di/dt \le 100A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$

THERMAL DATA

(101 10 300., 1.011111 110111 0030)	Rthj-case Rthj-amb T _I	Thermal Resistance Junction-case Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose (for 10 sec., 1.6mm from case)	Max Max	1.36 62.5 300	°C/W %C/W	
(101 10 300.; 1.011111 110111 0030)	' !	'		000		Ü

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions Min.		Тур.	Max.	Unit
V _{(BR)DSS}	Clamped Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	33			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = 16 V			10	μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 10 V			10	μΑ
V _{GSS}	Gate-Source Breakdown Voltage	I _{GS} = 100 μA	18			V

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 30 A		12.5	15	mΩ

DYNAMIC

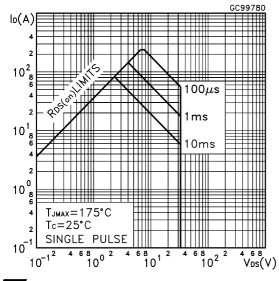
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	V _{DS} = 15 V I _D =30A		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1$ MHz, $V_{GS} = 0$		1330 420 135		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

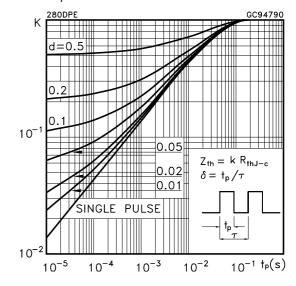
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{split} V_{DD} &= 20 \text{ V} & I_D = 20 \text{ A} \\ R_G &= 4.7 \ \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{split}$		13 104		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 20 V I _D = 40 A V _{GS} = 10V		34 10 11.5	47	nC nC nC

SWITCHING OFF

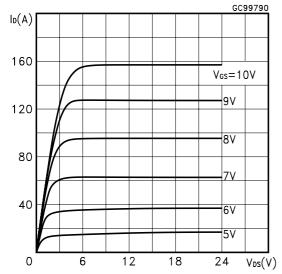

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		41 42		ns ns
t _{r(Voff)} t _f t _C	Off-voltage Rise Time Fall Time Cross-over Time	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		30 54 90		ns ns ns

SOURCE DRAIN DIODE

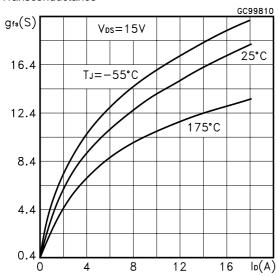

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)					62 248	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 62 A	$V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 40 A V _{DD} = 20 V (see test circuit	di/dt = $100A/\mu s$ $T_j = 150^{\circ}C$ t, Figure 5)		45 65 2.9		ns nC A

^(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. (•)Pulse width limited by safe operating area.

Safe Operating Area

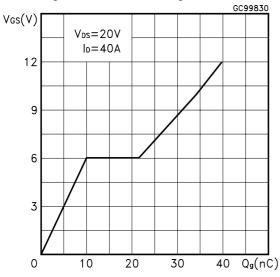


Thermal Impedance

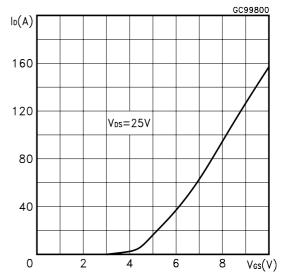


477

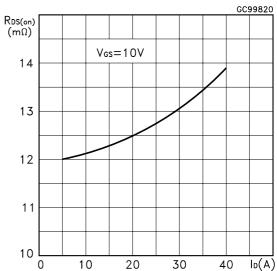
Output Characteristics

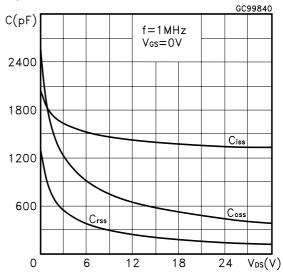


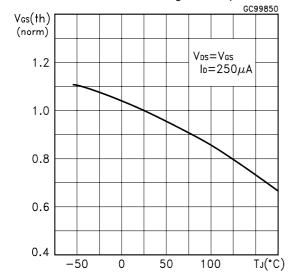
Transconductance

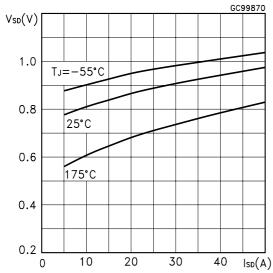


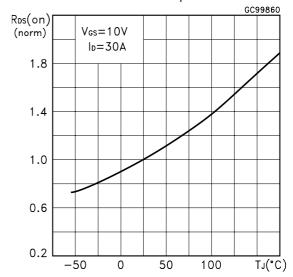
Gate Charge vs Gate-source Voltage


4/8


Transfer Characteristics


Static Drain-source On Resistance


Capacitance Variations


Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage Temperature.

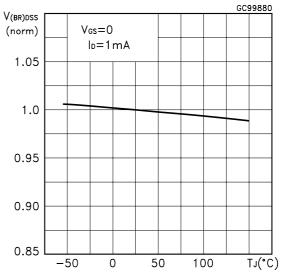


Fig. 1: Unclamped Inductive Load Test Circuit

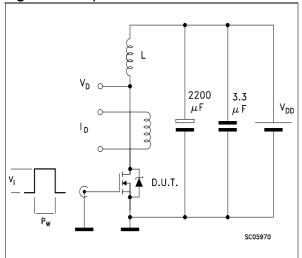
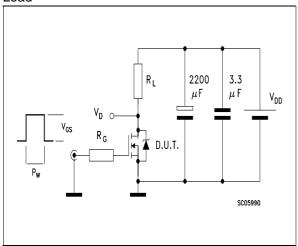



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

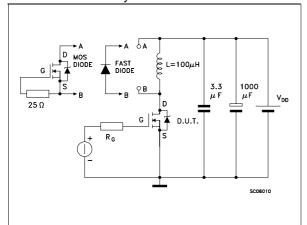


Fig. 2: Unclamped Inductive Waveform

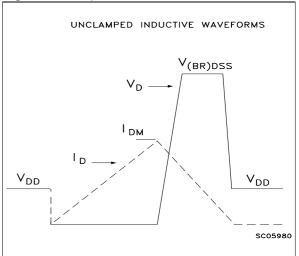
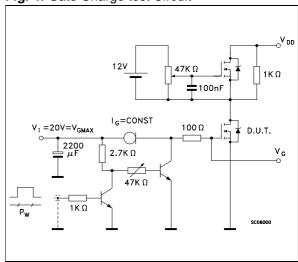
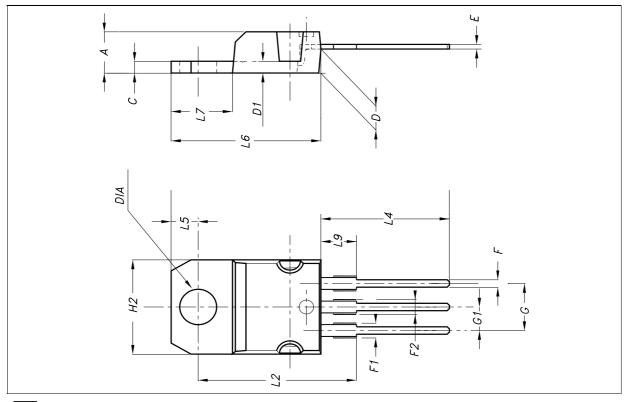




Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM		mm.		inch.				
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.		
Α	4.4		4.6	0.173		0.181		
С	1.23		1.32	0.048		0.051		
D	2.40		2.72	0.094		0.107		
D1		1.27			0.050			
E	0.49		0.70	0.019		0.027		
F	0.61		0.88	0.024		0.034		
F1	1.14		1.70	0.044		0.067		
F2	1.14		1.70	0.044		0.067		
G	4.95		5.15	0.194		0.203		
G1	2.40		2.70	0.094		0.106		
H2	10		10.40	0.393		0.409		
L2	16.10	16.40	16.73	0.633	0.645	0.658		
L4	13		14	0.511		0.551		
L5	2.65		2.95	0.104		0.116		
L6	15.25		15.75	0.600		0.620		
L7	6.20		6.60	0.244		0.260		
L9	3.50		3.93	0.137		0.154		
DIA	3.75		3.85	0.147		0.151		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com